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ABSTRACT: This study examines the possible relationship between predictions of weekly and biweekly averages of 10-m

winds at 3-week lead time and interannual variability over the western Pacific and Indian Ocean (WP-IO) using Climate

Forecast System version 2 (CFSv2) reforecasts for period 1979–2008. There is a large temporal correlation between fore-

casts and reanalyses for zonal, meridional, and total windmagnitudes at 10m overmost ofWP-IO for the average of weeks 1

and 2 (W1 andW2) in reforecasts initialized in January (JIR) andMay (MIR). Themodel has some correlations that exceed

95% confidence in some portions of WP-IO in week 3 (W3) but no skill in week 4 (W4) over most of the region. The model

depicts prediction skill in the 14-day average of weeks 3–4 (W3–4) over portions ofWP-IO, similar to the level of skill inW3.

The amplitude of interannual variability (IAV) for 10-m winds in W1 of JIR andMIR is close to that in reanalyses. As lead

time increases, the amplitude of IAV of 10-m winds gradually decreases over WP-IO in reforecasts, in contrast to behavior

in reanalyses. The amplitude of IAV of predicted 10-m winds in W3–4 over WP-IO is equivalent to that in W3 and W4 in

reforecasts. In contrast, the amplitude of IAV inW3–4 in January andMay of the reanalysis is much smaller than IAVofW3

andW4. Therefore, one of the possible causes for prediction skill inW3–4 over subregions ofWP-IO is due to a reduction of

IAV bias in W3–4 in comparison to IAV bias in W3 and W4.

SIGNIFICANCE STATEMENT: Reliable prediction at the subseasonal time scale using a coupled land–atmospheric–

ocean model is useful for making management decisions in agriculture and water management. This study explores a

relationship between prediction skill of weekly average surface winds at lead times of 1–4 weeks and interannual var-

iability over the western Pacific and Indian Ocean using the Climate Forecast System version 2 reforecasts during 1979–

2008. The model has prediction skill in some subregions that exceeds 95% confidence in week 3 but no skill in week 4.

Taking 14-day averages of weeks 3 and 4 produces forecasts whose skill is similar to that in week 3. There is a concurrent

reduction in interannual variability during weeks 3 and 4 in reforecasts. A hypothesis is put forward that the subseasonal

skill is related to the diminution of variability in the model.
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1. Introduction

The reliable prediction at the subseasonal time scale using

the state-of-the-art coupled ocean–atmosphere–land gen-

eral circulation models (CGCM) is very important because

it fills the gap between medium-range weather prediction

(up to 2 weeks) and seasonal mean prediction (e.g., NRC

2010; Koster et al. 2011; Vitart et al. 2012; Hoskins 2013;

Robertson et al. 2015; DelSole et al. 2017; Black et al. 2017;

Mariotti et al. 2020; Merryfield et al. 2020). A more detailed

introduction to prediction at the subseasonal scale is pro-

vided in other recent papers (Shukla and Kinter 2016;

Shukla et al. 2018, 2020). Reliable prediction at subseasonal

time scales is very useful in agriculture, transportation, and

water and energy resources management (e.g., White et al.

2017; Shukla and Kinter 2016).

The current state of weekly average prediction skill at

lead times of 1–4 weeks has been evaluated using the

global ensemble prediction systems (EPS) (e.g., Pegion and

Sardeshmukh 2011; Shukla and Kinter 2016; Li and Robertson

2015;Weber andMass 2017; Vigaud et al. 2017, 2018; Sun et al.

2018; Pegion et al. 2019). For example, Shukla and Kinter

(2016) found that the prediction skill of significant wave height

(SWH) anomalies in week-1 (W1) and week-2 (W2) averages

is high over most of the western Pacific and Indian Ocean

(WP-IO) region, and there is prediction skill in some subregions

of the WP-IO at 3-week lead time (W3) that exceed 95% con-

fidence. They examined January initialized reforecasts (JIR)

and May initialized reforecasts (MIR) produced by applying

wind forecasts from the National Centers for Environmental

Prediction (NCEP) Climate Forecast System version 2 (CFSv2;

Saha et al. 2014) toWAVEWATCH-III (WW3; Tolman 2009).

Li and Robertson (2015) compared the prediction skill of

precipitation at lead times up to 4 weeks in three global EPS,

and they found that all models are skillful in W1, but dramat-

ically decreased skill for W2 to week 4 (W4). They also found

that forecasts with the European Centre for Medium-Range

Weather Forecasts (ECMWF) forecast system are noticeably

better in W3 and W4 than forecasts from the CFSv2 or the
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Japan Meteorological Agency (JMA) EPS. Vigaud et al.

(2017) found that the forecast skill of weekly average precipi-

tation in three EPS reforecast sets (ECMWF EPS, NCEP

CFSv2 and China Meteorological Administration EPS) is

higher in winter than summer, and decreases with lead time,

after one week. Using EPS reforecasts, Sun et al. (2018) found

large anomaly correlation in W1 precipitation, 2-m tempera-

ture, and 500-hPa height over North America that exceed 95%

confidence. The above studies found that there are some sub-

regions of North America in W3 that exceed 95% confidence.

Many previous studies have discussed the subseasonal pre-

diction skill of 14-daymeans at 3-week lead time [weeks 3 and 4

average (W3–4)] using a global EPS (e.g., Hudson et al. 2011;

DelSole et al. 2017; Black et al. 2017; Vigaud et al. 2017, 2018;

Shukla et al. 2018; Sun et al. 2018; Wang and Robertson 2019;

Pegion et al. 2019). Using CFSv2 reforecasts, DelSole et al.

(2017) found anomaly correlation of W3–4 precipitation and

temperature over some subregions of the contiguous United

States that exceed 95% confidence. Using two global EPS

(ECMWF and CFSv2), Wang and Robertson (2019) found

correlation that exceed 95% confidence forW3–4 precipitation

and 2-m temperature over theUnited States, with the ECMWF

EPS having slightly higher prediction skill than CFSv2 EPS.

Shukla et al. (2018) found temporal correlations that exceed

95% confidence for W3–4 SWH over subregions of theWP-IO

in January and May. In general, prediction skill for W3–4 is

similar to that of W3 and larger than that of W4. For example,

Vigaud et al. (2018) found higher ranked probability skill score

and reliability for rainfall in W3–4 over the East Africa–West

Asia region compared to W3 or W4 forecasts for starts in

February–April in a multimodal ensemble. Using EPS refor-

ecasts, Sun et al. (2018) found that the anomaly correlation for

W3–4 precipitation, 2-m temperature, and 500-hPa height over

North America is similar to the anomaly correlation inW3 and

higher than that in W4.

In this paper, a possible cause for higher subseasonal pre-

diction skill in the 14-day mean of weeks 3 and 4 is explored in

the WP-IO region. For this purpose, a set of 20-member en-

semble CFSv2 reforecasts for the period 1979–2008 over the

WP-IO region, initialized in January and May as in (Shukla

et al. 2018), has been examined. The temporal anomaly cor-

relation and interannual variability of 10-m zonal and meridi-

onal wind, and the magnitude of 10-m winds has been

computed for W1, W2, W3, W4, and W3–4 over the WP-IO

region in JIR and MIR during 1979–2008. The prediction skill

of 10-m winds in the W3–4 over WP-IO is found to be similar

to that ofW3 and higher than that ofW4 in both JIR andMIR

for period 1979–2008. While the amplitude of interannual

variability of 10-m wind is similar in W1–W4 in the ECMWF

interim reanalysis (ERA-Interim; Dee et al. 2011), this vari-

ability decreases gradually fromW1 to W4 in the reforecasts.

We explore a possible relationship between subseasonal

prediction skill in average of weeks 1–4 and interannual

variability in the CFSv2 reforecasts over the WP-IO region.

This paper is organized as follows. Section 2 describes the

model, experimental design, verification datasets and analysis

method. Section 3 presents results of subseasonal prediction

skill of zonal and meridional winds at 10m in the Indo-Pacific

region and explores a relationship between prediction skill and

interannual variability in the JIR and MIR. A summary and

discussion are given in section 4.

2. Model description, experimental design, and
observational datasets

The coupled model used in this study is the NCEP CFSv2

(Saha et al. 2014), which is composed of interacting component

models representing the atmosphere (spectral horizontal res-

olution of T126 and 64 vertical levels in a hybrid sigma-

pressure coordinate), ocean [Geophysical Fluid Dynamics

Laboratory (GFDL)ModularOceanModel version 4–MOM4;

Griffies et al. 2004], sea ice (Winton 2000), and land surface

(Noah LSM; Ek et al. 2003). The GFDL MOM4 is configured

for the global ocean with a horizontal grid of 0.58 3 0.58
poleward of 308S/308N and meridional resolution increasing

gradually to 0.258 between 108S and 108N. Vertically, it has 40

levels in a z coordinate, with 27 levels within the upper 400m

and the maximum depth at approximately 4.5 km.

Details of JIR and MIR are described in Shukla et al.

(2018, 2020). Briefly, the model data are 1-month refor-

ecasts generated from the beginning of January (JIR) and

the beginning of May (MIR) for 1979–2008 using four dif-

ferent sets of ocean initial conditions (OICs) namely, NCEP

CFSR (Saha et al. 2010), NCEPGlobal OceanData Assimilation

System (GODAS; Behringer 2005), European Centre for

Medium-RangeWeather Forecasts (ECMWF)OceanReanalysis

System 3 (ORA-S3; Balmaseda et al. 2008), and ECMWF

ComprehensiveModeling of the Earth System for Better Climate

Prediction and Projection (COMBINE-NV; Balmaseda et al.

2013) with a slightly revised version of CFSv2 (Huang et al. 2015).

The analysis region is a portion of the western Pacific and Indian

Oceans (WP-IO; 808E–1808, 608S–408N) with a grid resolution of

18 3 18. The results discussed in the paper are based on the mean

of the 16 ensemble members daily instantaneous values

(0000UTC) in both JIR andMIR. The ECMWFERA-Interim

(Dee et al. 2011) instantaneous fields at 0000UTC for the 30-yr

period (1979–2008) are used to verify the model output. We

have employed JIR because the influence of ENSO is strongest

and MJO is active at that time in the WP-IO region. MIR was

chosen because monsoon circulation is in transition phase over

theWP-IP.As indicated above,W1,W2,W3, andW4 for JIR are

the averages of 1–7 January, 8–14 January, 15–21 January, and

22–28 January, respectively, and W3–4 is defined as the average

of 15–28 January. A similar convention is adopted for MIR.

The statistical significance of correlation coefficient is mea-

sured using a Student’s t test: given the sample size, correlation

values for 90%, 95%, 98%, and 99% significance levels are

0.30, 0.35, 0.41, and 0.45, respectively.

3. Results

a. Weekly prediction skills of surface winds

To explore the relationship between prediction skill and

interannual variability at lead times of W1, W2, W3, W4, and

W3–4, the temporal anomaly correlation coefficient (TACC),
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FIG. 1. Anomaly correlation skill of zonal winds at 10m (U10m) at 0000UTC between JIR and ERA-Interim in (a)W1, (b)W2, (c)W3,

and (d)W4 for 1979–2008 over the western Pacific and IndianOceans (WP-IO). Correlation coefficients (CC) contours are shown for 90%

(CC5 0.30), 95% (CC5 0.35), 98% (CC5 0.41), and 99% (CC5 0.45) significance levels. (e)–(h) As in (a)–(d), but for meridional winds

at 10m (V10m). (i)–(l) As in (a)–(d), but for magnitude of 10-m winds (UV10m).
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FIG. 2. The spatial distributions of interannual variability (IAV) of U10m in JIR at a lead time of (a) W1, (b) W2, (c) W3, and (d) W4 for

1979–2008 over the WP-IO. (e)–(h) As in (a)–(d), but for V10m. (i)–(l) As in (a)–(d), but for UV10m.
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FIG. 3. The climatological bias of IAV of U10m in JIR relative to ERA-Intrimin in (a)W1, (b)W2, (c)W3, and (d)W4 for 1979–2008 over

the WP-IO. (e)–(h) As in (a)–(d), but for V10m. (i)–(l) As in (a)–(d), but for UV10m.
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FIG. 4. Anomaly correlation skill of U10m at 0000 UTC between MIR and ERA-Interim in (a) W1, (b) W2, (c) W3, and (d) W4 for

1979–2008 over the WP-IO. Correlation coefficients contours are shown for 90% (CC 5 0.30), 95% (CC 5 0.35), 98% (CC5 0.41), and

99% (CC 5 0.45) significance levels. (e)–(h) As in (a)–(d), but for V10m. (i)–(l) As in (a)–(d), but for UV10m.
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FIG. 5. The spatial distributions of IAV of U10m in MIR at a lead time of (a) W1, (b) W2, (c) W3, and (d) W4 for 1979–2008 over the

WP-IO. (e)–(h) As in (a)–(d), but for V10m. (i)–(l) As in (a)–(d), but for UV10m.
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FIG. 6. The climatological bias of IAVofU10m inMIR relative toERA-Intrimin in (a)W1, (b)W2, (c)W3, and (d)W4 for 1979–2008 over

the WP-IO. (e)–(h) As in (a)–(d), but for V10m. (i)–(l) As in (a)–(d), but for UV10m.
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root-mean-square error (RMSE) and interannual variability

(IAV) of zonal wind at 10m (hereafter, U10m), meridional

winds at 10m (hereafter, V10m) and the magnitude of 10-m

winds (hereafter, UV10m) are computed. A standard proce-

dure has been employed to calculate the climatological mean

of the ensemble mean of 16 members. For example, for JIR,

the climatology was obtained based on 30-yr data of ensemble

mean at lead times W1, W2, W3, W4, and W3–4 over the

WP-IO region. For calculation interannual variability and anomaly

correlation, the climatology for those reforecasts was removed

in both JIR and MIR. The interannual variability (IAV) is the

square root of the variance in reforecast and reanalysis. The

TACC and RMSE are calculated between anomaly of 10-m

winds in reforecasts and reanalysis over the WP-IO region.

1) WEEKLY PREDICTION SKILLS OF SURFACE

WINDS IN JIR

Figure1depictsTACCforU10m(Figs. 1a–d),V10m(Figs. 1e–h),

and UV10m (Figs. 1i–l) in JIR forW1, W2, W3, andW4 over the

WP-IO. During the first two weeks, the TACC is large and that

exceed 95% confidence over the entire WP-IO for all three var-

iables. Portions of the WP-IO region have TACC that exceed

95%confidence forW3 over the equatorial western PacificOcean

(1508E–1808, 158S–108N), Bay of Bengal (BOB), northwestern

Pacific Ocean mainly between 258 and 408N, and southern Indian

Ocean (IO) (358–258S, 808–1208E) forU10 (Fig. 1c), V10 (Fig. 1g)

and UV10 (Fig. 1k). During W4, there are correlations that ex-

ceed 95% confidence in the equatorial western Pacific and

equatorial IO for U10m (Fig. 1d) and in the equatorial western

Pacific for V10m (Fig. 1h) but most of the subregions of the

WP-IOdonot exceed 95%confidence inW4 forUV10m (Fig. 1l).

The RMSE is relatively low in W1 for U10m up to 1.9ms21

(Fig. S1a in the online supplemental material), V10m up to 1.0–

1.6ms21 (Fig. S1e), and UV10m up to 1.0–1.3m s21 (Fig. S1i) in

the equatorial western Pacific Ocean, Southern Ocean (SO), and

equatorial IO. As lead time increases, the magnitude of RMSE

increases over the WP-IO mainly in the SO in W3 and W4 for

U10m up to 2.5–3.4ms21 (Figs. S1c,d), V10m up to 2.2–2.8ms21

(Figs. S1g,h), and UV10m up to 1.0–1.6ms21 (Figs. S1k,l).

Figure 2 shows IAV of U10m (Figs. 2a–d), V10m (Figs. 2e–h)

and UV10m (Figs. 2i–l) in JIR. It is found that amplitude of

IAV inW1 of JIR is up to 3.6–4.0m s21 forU10m (Fig. 2a), 2.4–

2.8m s21 for V10m (Fig. 2b) and 1.6–2m s21 for the magnitude

of UV10m mainly over the equatorial and northwestern Pacific,

FIG. 7. (a) Anomaly correlation skill ofU10mat 0000UTCbetween JIR andERA-Interim in average of weeks 3 and 4 (W3–4) for 1979–2008

over theWP-IO. Correlation coefficients contours are shown for 90% (CC5 0.30), 95% (CC5 0.35), 98% (CC5 0.41), and 99% (CC5 0.45)

significance levels. (b) As in (a), but for V10m in JIR. (c) As in (a), but for UV10m in JIR. (d)–(f) As in (a)–(c), but for MIR for 1979–2008.
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SO, and equatorial IO, which is similar to that in January ERA-

Interim reanalysis (Figs. S2a,e,i). As lead time increases, the

magnitude of IAVdecreases graduallymainly over the Southern

Ocean in W3 and W4 of JIR (Fig. 2). The amplitude of IAV in

W3 and W4 of JIR is up to 1.6–2.4m s21 for U10m over the

equatorial western Pacific and IO (Figs. 2c,d), 0.8–1.6m s21 for

V10m (Figs. 2g,h), and 0.8–1.2m s21 for UV10m (Figs. 2k,l). In

contrast, the magnitude of IAV in the ERA-Interim reanalysis

remains about the same for all weeks (from W1 to W4) in

January for all three variables (Fig. S2). Therefore, there is

relatively little IAV bias in W1 of JIR for all three variables

(Figs. 3a,e,i). But, as lead time increases, the magnitude of IAV

bias increases over the SO,mainly inW4of JIR forU10m (Fig. 3d)

up to21.8 to22.2ms21, V10m (Fig. 3e) up to21.4 to21.8ms21

and magnitude of UV10m (Fig. 3l) up to 20.6 to 21.0ms21.

2) WEEKLY PREDICTION SKILLS OF SURFACE

WINDS IN MIR

For MIR, the TACC is large over theWP-IO region inW1

and W2 for U10m (Figs. 4a,b), V10m (Figs. 4e,f) and

UV10m (Figs. 4i,j) that exceed 95% confidence except over

the central-western Pacific in W2 for UV10m. There is skillful

correlations that exceed 95% confidence in W3 over the

southern BOB, equatorial IO and equatorial western

Pacific (mainly 1508E–1808, 158S–58N) for all three vari-

ables (Figs. 4c,g,k). During W4 (Figs. 4d,h,l), correlation does

not exceed 95% confidence almost everywhere except in the

equatorial western Pacific for U10m. The RMSE is relatively

small in W1 for U10m up to 1.0–1.6m s21 (Fig. S3a), V10m up

to 1.0–1.9m s21 (Fig. S3e), and UV10m up to 0.7–1.3m s21

(Fig. S3i) in the SO, equatorial IO, and northern western

Pacific. As lead time increases, the magnitude of RMSE in-

creases mainly in the Southern Ocean in W3 and W4 for all

three variables (Fig. S3). Overall, TACC (RMSE) is generally

higher (lower) in the tropics (mainly 188S–188N) than the ex-

tratropical region (mainly, 208–408N and 608–208S) as noted

before for significant wave height (SWH) over the IO-WP in

the JIR and MIR (Shukla and Kinter 2016).

In MIR, the model IAV is large in W1 over the SO, equa-

torial and northern western Pacific, and equatorial IO for

U10m up to 3.2–4.4m s21 (Fig. 5a), V10m up to 2.0–3.2m s21

(Fig. 5e) and UV10m up to 1.6–2.4m s21 (Fig. 5i), with am-

plitude very similar to that of the weekly means in the May

ERA-Interim reanalysis (Figs. S4a,e,i), so that the bias is small

in W1 of MIR for all three variables (Figs. 6a,e,i). As lead time

increases, the magnitude of IAV decreases gradually in W3

FIG. 8. (a) Root-mean-square error of U10m at 0000 UTC in average of W3–4 of JIR for 1979–2008 over theWP-IO. (b) As in (a), but for

V10m in JIR. (c) As in (a), but for UV10U in JIR. (d)–(f) As in (a)–(c), but for MIR for 1979–2008.
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and W4 of MIR for all three variables (Fig. 5). The magnitude

of IAV in all weekly means in May of the ERA-Interim re-

analysis is about the same (Fig. S4). Therefore, the magnitude

of IAV bias for all three variables is much larger over the SO in

W4 compared to W1 of MIR (Fig. 6).

To summarize these results, in W1 and W2, reforecasts have

largeTACC that exceed 95%confidence and small IAVbias over

most of the WP-IO in both January and May, for U10m, V10m,

andUV10m.On the other hand, themodel does not depict TACC

that exceed 95% confidence in most of regions of the WP-IO in

W4and the IAVbias is large inW4,mainly in the SouthernOcean

in January and May cases. Therefore, high correlation and low

interannual variability bias coincide for U10m, V10m, and

UV10m at lead times of weeks 1–4 in JIR and MIR. It is con-

ceivable that if the IAV bias could be reduced in W3 and W4 in

JIR and MIR, than skill of 10-m wind forecasts would be higher.

b. Biweekly prediction skills of surface winds

1) BIWEEKLY PREDICTION SKILLS OF SURFACE

WINDS IN JIR

Figure 7 shows the W3–4 forecast skill (TACC) between

U10m, V10m, and UV10m of JIR (MIR) and January (May)

ERA-Interim reanalysis over the WP-IO. In January, there is

correlations that exceed 95% confidence for U10m (Fig. 7a)

over the equatorial and northern western Pacific, equatorial

IO, and southern IO mainly in (808–1208E, 428–288S). V10m

forecasts (Fig. 7b) are skillful that exceed 95% confidence over

central and northern western Pacific, southern BOB and

southern IO mainly between (308–158S), and UV10m forecasts

(Fig. 7c) are skillful that exceed 95% confidence over the

equatorial western Pacific, southern BOB and southern IO

mainly between (338–158S). TheRMSE is relatively large in the

SO, northern western Pacific, Maritime Continent, and equa-

torial IO mainly between (148–68S) for U10m up to 2.2–

3.1m s21 (Fig. 8a), and over SO and northern western Pacific

for V10m up to 1.3–1.9m s21 (Fig. 8b), and over the SO and

Maritime Continent for UV10m up to 1.0–1.6m s21 (Fig. 8c).

The amplitude of IAV in the W3–4 of JIR is 1.2–2.0m s21

for U10m over the equatorial and northern western Pacific

and equatorial IO (Fig. 9a), 0.8–1.6m s21 for V10m over the

western Pacific (Fig. 9b), and 0.8–1.2m s21 for UV10m

(Fig. 9c). It is necessary to mention that the amplitude and

spatial structure of IAV in the W3–4 of JIR for U10m

(Fig. 9a), V10m (Fig. 9b) and UV10m (Fig. 9c) is equivalent

to amplitude and structure of IAV in the W3 and W4 of JIR

FIG. 9. (a) The spatial distributions of IAVofU10m in JIR at a lead time of averageW3–4 for 1979–2008 over theWP-IO. (b)As in (a), but

for V10m in JIR. (c) As in (a), but for UV10m in JIR. (d)–(f) As in (a)–(c), but for MIR for 1979–2008.
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for U10m (Figs. 2c,d), V10m (Figs. 2g,h) and UV10m (Figs. 2k,l).

The amplitude of IAV in the average of W3–4 of January

ERA-Interim reanalysis is 1.6–2.8m s21 for U10m over the

central and northern western Pacific, SO and equatorial IO

(Fig. S5a), 0.8–2.0m s21 for V10m over the SO, central and

northern western Pacific (Fig. S5b), and 0.8–1.6m s21 for

UV10m over the SO and equatorial IO (Fig. S5c). It is found

the amplitude of IAV in W3–4 of January ERA-Interim re-

analysis is much less than that of W3 and W4 of January

ERA-Interim reanalysis for the U10m, V10m, and UV10m.

Therefore, the amplitude of IAV bias in W3–4 (Figs. 10a–c) is

smaller for all three variables than that for W3 (Figs. 3c,g,k)

or W4 (Figs. 3d,h,l) in JIR over the WP-IO region.

2) BIWEEKLY PREDICTION SKILLS OF SURFACE

WINDS IN MIR

In May, U10m forecasts (Fig. 7d) are skillful that exceed

95% confidence over the central western Pacific, BOB, South

China Sea (SCS), equatorial IO, and Maritime Continent in

W3–4. There is skillful correlation that exceed 95% confidence

for V10m (Fig. 7e) in W3–4 over the northern BOB, Maritime

Continent, SCS and western Pacific mainly regions (158–28S,
1508E–1808) and (58–158N, 1258–1508E). UV10m forecasts

(Fig. 7f) are skillful that exceed 95% confidence over the

northern BOB, IO mainly between (108–58S), Maritime

Continent, western Pacific mainly between (108S–108N, 1558E–
1808), and SO mainly between (458–358S). The model depicts

relatively larger RMSE inW3–4 of MIR over the SO, northern

western Pacific, BOB and SCS for U10m up to 1.6–3.1m s21

(Fig. 8d), and V10m up to 1.6–2.5m s21 (Fig. 8e), and over the

SO and BOB for UV10m up to 1.0–1.6m s21 (Fig. 8f). Shukla

et al. (2018, 2020) made a similar conclusion for SWH for the

average of W3–4 over the IO-WP in JIR and MIR.

The amplitude of IAV in W3–4 of May (Figs. 9d–f) is gen-

erally smaller in the reforecasts (MIR) than in the ERA-

Interim reanalysis (Figs. S5d–f), but the magnitude of bias in

W3–4 for all three variables is smaller than that for W3

(Figs. 5c,g,k) orW4 (Figs. 5d,h,l). This is because the amplitude

and spatial structure ofW3–4 IAV in the reforecasts forMIR is

similar to that in W3 and W4, whereas the IAV in the ERA-

Interim reanalysis is much smaller in W3–4 than in either W3

orW4. It is found that taking a 14-day average of weeks 3 and 4

of January (May) ERA-Interim reanalysis for U10m, V10m

and UV10m reduces the amplitude of IAV in the W3–4 com-

pared to the 7-day averages inW3 andW4.We have also found

that the IAV bias of SWH inW3–4 is less overmost of region of

FIG. 10. (a) The climatological bias of IAV of U10m in JIR relative to ERA-Intrimin in average of W3–4 for 1979–2008 over the WP-IO.

(b) As in (a), but for V10m in JIR. (c) As in (a), but for UV10m in JIR. (d)–(f) As in (a)–(c), but for MIR for 1979–2008.
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WP-IO than the IAV bias of SWH in W3 and W4 in JIR and

MIR (results not shown).

4. Summary and discussion

A relationship between subseasonal prediction skill and inter-

annual variability of 10-mwind at lead times of average ofweeks 1

to 4 has been analyzed over the WP-IO region using the coupled

CFSv2 reforecasts in January and May cases during period 1979–

2008. While the model is skillful prediction skill over most of the

WP-IO region that exceed 95% confidence in W1 and W2, it is

generally less skillful inW3andW4, although there are subregions

with useful anomaly correlation that exceed 95% confidence in

W3 (e.g., equatorial and northern western Pacific Ocean, Bay of

Bengal in January and southern BOB, equatorial IO, and equa-

torial western Pacific in May). For W4 there are only pockets of

useful TACC that exceed 95% confidence, e.g., over the equa-

torial western Pacific and equatorial IO for U10m and the equa-

torial western Pacific for V10m in January. The RMSE is lower in

W1 but as lead time increases, the amplitude of weekly mean

RMSE increases mainly in the Southern Ocean.

The interannual variability of U10m, V10m, and UV10m

over the WP-IO has nearly the same magnitude in reforecasts

and the ERA-Interim reanalysis in W1 for both January and

May cases. Therefore the IAV bias is relatively small inW1. As

lead time increases, the amplitude of weekly average IAV

decreases gradually in the WP-IO mainly over the Southern

Ocean, especially in W3 and W4, while the IAV in the ERA-

Interim reanalysis remains roughly the same over each 4-week

period (January and May). This feature and the subsequent

discussion hold for all three surface wind variables (U10, V10,

and UV10). Therefore, there is much larger weekly average

IAV bias in W3 and W4 as a result in JIR and MIR over the

WP-IO region.

While the skill is more modest in the 14-day averages of

W3–4, there is skillful TACC that exceed 95% confidence for

U10m, V10m, and UV10m over the equatorial and north-

western Pacific Ocean, equatorial IO, southern BOB, and

southern IO in JIR, and over the central western Pacific, BOB,

South China Sea, equatorial IO, and Maritime Continent in

MIR. The amplitude and spatial structure of IAV in the 14-day

average of W3–4 of JIR and MIR is equivalent to the ampli-

tude and structure of IAV in the 7-daymeans forW3 andW4 of

JIR andMIR. In other words, the longer time (14-day) average

produces IAV comparable in magnitude to the shorter (7-day)

average in JIR and MIR. In contrast, the amplitude of IAV in

FIG. 11. (a) The climatological bias of IAV of U10m in JIR relative to ERA-Intrimin in average of W1–2 for 1979–2008 over the WP-IO.

(b) As in (a), but for V10m in JIR. (c) As in (a), but for UV10m in JIR. (d)–(f) As in (a)–(c), but for MIR for 1979–2008.
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the 14-day mean W3–4 of January and May ERA-Interim re-

analysis is much less than that of W3 or W4. That is, the longer

time average reduces the variance in the ERA-Interim re-

analysis. Therefore, the amplitude of IAV bias in W3–4 is

smaller over the WP-IO than that for W3 or W4 of JIR

and MIR.

The behavior in JIR andMIR at longer lead times (weeks 3–

4) is different from the first two weeks. It is also found that the

IAV of 10-m winds in the 14-day average of weeks 1 and 2

(W1–2) in JIR (Figs. S6a–c) and MIR (Figs. 6d–f) over the

WP-IO is close to that in January (Figs. S7a–c) and May

(Figs. S7d–f) ERA-Interim reanalysis for period 1979–2008.

Therefore, the model has less IAV bias for U10m, V10m, and

UV10m in W1–2 over the WP-IO in JIR (Figs. 11a–c) and

MIR (Figs. 11d–f). The TACC for 10-m winds in 14-day

means in W1–2 of WP-IO in JIR (Figs. S8a–c) and MIR

(Figs. S8d–f) is similar to that in W1 in JIR (Figs. 1a,e,i) and

MIR (Figs. 4a,e,i). It is necessary to mention that IAV bias of

U10m, V10m, and UV10m for W3–4 in JIR and MIR is larger

than that for W1–2 over the WP-IO for period 1979–2008,

therefore, prediction skill of 10-m winds for W3–4 in JIR and

MIR over the WP-IO is lower than in W1–2.

There is no TACC that exceed 95% confidence over most of

theWP-IO region inW4 in January orMay, but the correlation

is larger in some subregions of WP-IO in the 14-day average of

W3–4. The places where TACC is exceeding 95% confidence

in W3–4 coincide with the places where the TACC is larger in

W3. Therefore, the skill of W3–4 largely results from the skill

of W3 in these places.

The results of this analysis support the conjecture that the

model deficiency in maintaining the variance of near-surface

wind leads to a diminution of skill in temporal averages. This

deficiency is most acute at the weekly average time scale and is

readily apparent in comparison of forecast statistics at lead

times of 1–2 weeks with the same statistics at lead times of

3–4 weeks. There is also an indication that the presence of skill

in the W3–4 reforecasts where there is no correlations that

exceed 95% confidence in W4 may be a result of the diminu-

tion of IAV bias in W3–4. The results of this paper provide the

importance of interannual variability of 10-m winds in the

subseasonal prediction in the state-of-the-art coupled general

circulation model reforecasts.
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